Friday, 14 September 2018

New discovery on T cell behavior has major implications for cancer immunotherapy

Scientists at the University of Colorado Anschutz Medical Campus have discovered that disease-fighting T cells, elicited from vaccines, do not require glucose for their rapid reproduction, a finding with major implications for the development of immunotherapies for cancer patients.
In this study, they examined T cells that arose in the body's immune system after they received a subunit vaccination—a  that uses just part of a disease-causing virus.

They found that these critical , which attack and kill infection, did not rely on  to fuel their rapid division which occurs every two to four hours. Instead, they used another cellular engine, the mitochondria, to support their expansion.
"The knowledge that this magnitude of cell division can be supported by mitochondrial function has a number of potential practical implications for the development of future vaccines," said Ross Kedl, Ph.D., Professor of Immunology and Microbiology, University of Colorado School of Medicine.
Kedl continued by saying"T cells responding to infection usually depend on glucose for fuel. So do cancerous tumors. When T cells come up against tumors, they end up competing for glucose and the T cells often lose".
But when a T cell doesn't need glucose, he noted, it has a better chance of defeating .
"T cells generated by subunit vaccination are ideally suited for use against cancer in conjunction with drugs that block aerobic glycolysis, a metabolic pathway to which the cancer is addicted, Tumor growth can be inhibited while the T cells are free to attack the tumor instead of competing against it for access to glucose."" Kedl said. 
Jared Klarquist, Ph.D., explained that scientists have historically studied T  to infection with the idea that if they could understand how the cells respond, they could create better vaccines. Kedl and colleagues had already discovered a non-infectious vaccine method that could induce the same level of T cell immunity as those using infection.
Since then, researchers in Kedl's lab have found that the rules governing T cell responses to an infectious agent are very different from the cell's response to a subunit vaccine. And the fact that T cells derived from subunit vaccines don't require glucose to reproduce is a major finding.
"Prior to these findings, it was generally thought that whereas the mitochondria are good at making energy, T cells need glucose to produce the raw materials like proteins, fats and nucleic acids (like DNA) required to turn one cell into two," said Klarquist. "Knowing how the immune response is fueled after vaccination provides potential opportunities for metabolic or nutritional interventions for boosting a vaccine-elicited immune response."
Kedl agreed and says "Perhaps most intriguing, however, is the application of this knowledge to cancer immunotherapy,"
 
We encourage researchers all around the globe to submit abstract on their latest research at our upcoming conference Cell Tissue Science 2019 which is mainly focuses on the complications the consequences of Stem CellRegenerative MedicineStem Cell TherapyCancer Cell Biology , Technical Advancements in cancer treatment   and many more.We welcome you to the our upcoming conference “ 12th World Congress on Cell & Tissue Science” . For more info visit :Cell Tissue Science 2019