Tuesday 12 June 2018

Genome-editing tool could increase cancer risk

Latest study from Karolinska Institutet, Sweden and University of Helsinki, Finland suggest that therapeutic use of gene editing with the so-called CRISPR-Cas9 technique may inadvertently increase the risk of cancer. Although researchers say that more studies are required in order to guarantee the safety of these 'molecular scissors' for gene-editing therapies.

CRISPR-Cas9 is a molecular machine first discovered in bacteria that can be programmed to go to an exact place in the genome, where it cuts the DNA. These precise 'molecular scissors' can be used to correct faulty pieces of DNA and are currently being used in clinical trials for cancer immunotherapy in the US and China. New trials are expected to be launched soon so as to treat inherited blood disorders such as sickle cell anemia.

Two independent articles published in the journal Nature Medicine now report that therapeutic application of the genome-editing tool may increase the risk of cancer. scientists from Karolinska Institutet and the University of Helsinki mentioned in one of the studies report  that use of CRISPR-Cas9 in human cells in a laboratory setting can activate a protein known as p53, which acts as a cell's 'first aid kit' for DNA breaks.Once active, p53 reduces the efficiency of CRISPR-Cas9 gene editing. Since, cells that do not have p53 or are unable to activate it show better gene editing. Unfortunately, lack of p53 is also known to contribute to making cells grow uncontrollably and become cancerous.
"By picking cells that have successfully repaired the damaged gene we intended to fix, we might inadvertently also pick cells without functional p53. If transplanted into a patient, as in gene therapy for inherited diseases, such cells could give rise to cancer, raising concerns for the safety of CRISPR- based gene therapies. " Credits: Dr Emma Haapaniemi, Department of Medicine at Karolinska Institutet, Huddinge and co-first author of the study.
Dr Bernhard Schmierer, Department of Medical Biochemistry and Biophysics at Karolinska Institutet and Head of the High Throughput Genome Engineering Facility of Science for Life Laboratory (SciLifeLab) said that "CRISPR-Cas9 is a powerful tool with staggering therapeutic potential. Like all medical treatments however, CRISPR-Cas9-based therapies might have side effects, which the patients and caregivers should be aware of. Our study suggests that future work on the mechanisms that trigger p53 in response to CRISPR-Cas9 will be critical in improving the safety of CRISPR-Cas9-based therapies."

Submit Your Abstract from the related field of Cell biology and Stem Cell Research: Click Here