Missense mutations occur when there is a change in one gene's DNA base pair and the change results in the substitution of one amino acid for another in the gene's protein. Mutations that disrupt the function of proteins are widely recognized as a risk source for development disorders such as Intellectual Disability, Congenital Heart Defects and Autism Spectrum Disorder (ASD).
A computationally integrated approach to investigate the functional impact of missense mutations, which was published in Nature Genetics. The team which consist of Dr. Kathyrn Roeder from Carnegie Mellon University, tested the approach by analyzing genetic structures of individuals with ASD who also had mutations as well as their siblings who did not have the mutations. They found that the framework successfully identified and prioritized missense mutations that contribute to disease or disorder risk.
"Identifying genetic mutations that increase the likelihood of disease is a major challenge to progress for personalized medicine. Using a machine learning model that predicts which mutations are likely to perturb the human interactome network, we showed that these mutations are much more likely to occur in autistic children than their siblings. This result extends to several other mental disorders suggesting that our finding may have even broader applicability. " says Dr. Roeder, the UPMC Professor of Statistics and Life Sciences in the Dietrich College of Humanities and Social Sciences
Submit your abstract on Track 17: Precision Medicine : Click Here